
MAn

Naval Research Laboratory T
Washington, DC 20375-5000

NRL Memorandum Report 6243

BaRT Manual
0) Preliminary Version 2.0

N. HOTA

Javcor, 1608 Spring Hill Road
Vienna, VA 22180-2270

, -C. L. RAMSEY AND L. B. BOOKER

iA?
" Naval Center for Applied Research in Artificial Intelligence

Information Technology Division

June 22, 1988

DTIC
ELECTE*

-, AUG 0 81988

H

Approved for public release. distribution unlimited.

S.:BI

N ,.SECURITY CLASS,FiCAT ON OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704.0788

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; distribution
2b DECLASSIFICATION/ DOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Memorandum Report 6243

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1 (If! apic~blei
Naval Research Laborarory Code 5 iu

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS(City, State, and ZIPCode)

Washington, DC 20375-5000

Ba. NAME OF FUNDING, SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION - (If applicable)

Office of Naval Research

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK jNIT

Arlington, VA 22217 ELEMENT NO NO NO ACCESSION NO

I 62234N 1-805
11 TITLE (Include Security Classification)

BaRT Manual Preliminary Version 2.0

12. DERSONAL AUTIOR(S)

Ramsey, C.L., Booker, L.B. and Hota,* N.
!?a YPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Interim FROM AA TO 1988 June 22 43

6 SUPDLEMENTARY NOTATION

*Javcor, 1608 Spring Hill Road, Vienna, VA 22180-2270

7 COSATI CODES 18 SUBJECT TERMS "Continue on reverse if necessary and identify by block 'Iumoer}

:iELD GROUP SUB-GROUP Classification problem solving Bayesian reasoning

Exp4ert system Uncertaintv
Belief maintenance

9 ABSTRACT !Continue on reverse if necessary and identify by block number)

BaRT is an inference engine which has been developed to aid in classification problem solving. This
S tool is belief maintenance component of an expert system shell currently under development. This inference

engine uses Bayesian reasoning and can handle problems associated with incomplete and uncertain evidence.
It has successfully been used to perform ship classification. This manual describes how to load the BaRT
program and how to use all of the available commands. This manual also provides some theoretical back-

-"ground and some implementation details concerning BaRT.

0

% ,,,<

.5,.
20 DfSTRI8UJ o "ALABiL,"Y OF ABSTRACT * ABSTRAC" SECjRITI CASSF CA; ON

• :C] JNCLASS;F*EDUNL MIED [] SAME AS RP
r

: D71C jSERS UNCLASSIFIED
'2a 'JAME 'F #,'ESPONS,BLE "JDviuAL 22b "ELEPHONE (Incluae 4rea Code) 22C 3,FC-

Connie L. Ramsey (202) 767-2877 Code 5510

DD Form1473, JUN 86 Previous editions are obsolete ;E(_(L,, ,'-, -'

S,'N 0102-LF-) 15-6603

0%

= ' t.-.%

.1CONTENTS

1. Introduction 1

2. Belief Networks 1

3. Using BaRT 2

3.1. Data Files

3.2. Running the Program

:I-,, 3.2.1. Loading the System Definitions and the System -nto PCL 5

3.2.2. Using the Command Menus
3.2.3. Top-Lcvel BaRT Windows and Commands 0

3.2.4. Knowledge Acquisition Mode 12
3.2.5. Joint Conditional Probability Mode 10

3.2.6. Avoiding Potential Problems Wh-ile Running BaRT 10

3.3. Example 10

-4. Implementation

5. Selected Implementation Details 25

Appendix A

Appendix B 31

Appendix C 35

References 39

Accession For

Z4TTS CRA&I

v. DTIC TAB
Unannouteed

... justiloatton

* By.- .__

Distribution/
I v" kilability Codes

IAVail nid/or
Special

I
;.•.'', , -e a ."."-."(, .•p,.r,.. -,aoz ' .' ," .. ,. . - '-,-''"L".".'/ ".•, , .'"j''.'j,•.' ". ."m ,'' , ,"

BaRT MANUAL PRELIMINARY VERSION 2.0

1. Introduction

Many real world problems are asociated with uncertainty; the evidence people
observe which helps them to reason about some goal event is almost always uncertain
and incomplete. Still, people make judgements based on this uncertain and incomplete
evidence. These uncertain evidences can be combined in various ways to find the validity
or strength of a hypothesis [6,8], and Bayesian probability theory is a normative theory
that allows one to reason about and combine uncertainties. Pearl has devised a way to
represent, reason about and combine uncertain evidences in a way that conforms to the
tenets of probability theory, but avoids the disadvantages usually associated with proba-
bilistic computations of belief,[6f. BaRT is a Bayesian Reasoning Too[which implements
Pearl's ideas. It has been implemented as an A programming environment which can
perform classification problem solving, and it has been used to classify shipsc4 -t In
BaRT, a classification problem is represented as a network of hypotheses. The belief in
each value of each hypothesis can change as new evidence lends support to (or takes sup-
port away from) certain values of the hypothesis.

0The rest of this manual is organized as follows.- Section 2 provides an overview of
the theoretical background for this work. Section 3 explains how to use BaRT and pro-

, vides an example. Sections 4 and 5 provide details concerning the implementation of this
-ystem.

-. This manual describes a preliminary version of a system which is under develop-
ment. Later versions of BaRT will have greater capabilities, so any of the functions and
capabilities described here are subject to change. -

¢; ') .:2. Belief lNetworks

- :.!Pearl's framework provides a method for hierarchical probabilistic reasoning in
Sdirected. acyclic graphs called belief networks. Each node in the network represents a
• discrete-valued hypothesis which describes -an aspect of the domain. and each node con-
-. +-tains information about both the current belief of each value of the hypothesis and tile

-. + ms robb!Pinsantatin o th hpothesis given the evidence available. called t1e

.- ,- beilef" distribution. (The belief' distribution provides a way to determine how tile a:ri-
"""Ols derees of belief in hy potheses can be interpreted. Generating a cohierent explanation

0

PeManunpt approved Aprki 5. 1988

rieat

. discret-vaudpotthesis which dscribe an aspct of he domin, andeach nde con

involves the simultaneous acceptance of a set of hypotheses, a requirement that goes
beyond simply noting the degree of belief in any individual hypothesis. This means that
the problem solver must make a commitment in categorical terms about the best way to
instantiate each hypothesis variable based on the evidence available.) Each link between
two nodes represents a direct causal dependence between two of the hypotheses. and the
directionality of the link is from cause to manifestation. Each node contains a tensor1 of
probabilities conditioned on the states of the causal variables; this tensor quantifies the
relationship between a node and its parents (causes). It is important to note that
numbers used to quantify the relationship do not have to be probabilities. All that is
required is that the tensor entries are correct relative to each other.

The belief updating scheme keeps track of two sources of support for belief at each
node: the diagnostic support derived from the evidence gathered by descendants of the
node and the causal support derived from evidence gathered by parents of the node.
Diagnostic support (X) provides the kind of information summarized in a likelihood ratio
for binary variables. Causal support (7r) is the analogue of a prior probability, summar-
izing the background knowledge lending support to a belief. These two kinds of support
are combined to compute the belief at a node with a computation that generalizes the

V. •odds/likelihood version of Bayes' rule. Each source of support is summarized by a

,separate local parameter, which makes it possible to perform diagnostic and causal infer-
ences at the same time. These two local parameters (X and ,-r), together with the tensor

* .. of numbers quantifying the relationship between the node and its parents. are all that is
required to update beliefs. Incoming evidence perturbs one or both of the support
parameters for a node. This serves as an activation signal, causing belief at that node to
be recomputed and support for neighboring nodes to be revised. The revised support is
transmitted to the neighboring nodes. thereby propagating the impact of the evidence.
Propagation continues until the network reaches equilibrium. The overall computation
assigns a belief to each node that is consistent with probability theory. Using a similar
computation. similar supporting factors (7r* and *) are used to find the belief* distribu-
tion. Section 4 provides details concerning the implementation of this belief network.
and the equations for belief and belief* updating are presented in Appendix . The
reader is referred to Pearl [61 for more details about the theoretical framework of this

belief maintenance svstem.

3. Using BaRT

The system is implemented in Portable Common Loops (PCL) on top of Common
0 LISP. (.Note that PCL is very similar to Common LISP Object System Specifications

I A tenl.5or is a mathematical object that is a generalization of a vector to higher orders. The
order of a tensor is the number of indices needed to specify an element. A. vecLor is therefore a
tensor of order one and a matrix is a tensor of order two.

20°

.1
°
%-

(CLOSS).) A graphic interface is provided on Symbolics and Suns showing the network
(the nodes and their relations), the belief vectors, the belief* vectors, the support param-

eters, the dynamic propagation of beliefs (or belief*) as new evidence is obtained, and
other related values.

To build the network for a particular problem, the user must provide the specific
information about the nodes, the links, and the joint conditional probability tensors.
This information can be entered into the system by using the graphic interface
knowledge acquisitien routines provided by BaRT or by declaring the information in a
data file which is presented to the program. See the sections on Running the Program
and more specifically on Knowledge Acquisition to use the graphic interface routines. If
the user prefers to enter this information in a data file. he should see the following sec-
tion entitled Data Files.

3.1. Data Files

The network and its nodes and links can be defined in a data file. First deciare le
network with the macro make-net as follows:

(make-net 'network-name)

wviere

network-name is the name of the network.

Now the user must declare each node and link in the network using the macros
nmake-node and make-link. Make-node takes one argument and some kevword arguments.

The first argument is the name to be -iven to the node being created. Keyword arg1j-
ments are given below, and text in italics should be replaced by the user. To create a
node. use make-node as follows:

make-node nodename
Jw :role documentation-string

:node-values '(vail va2 vai3 ... vain)
:prior 'prior-probability
:condprol "joint-conditional-probability-tensor
:parents-ord "(pnamel pname2 pname3 ... pnameni)

where

documentation-string is a documentation string explaining the role o this hypothesis
in the overall model. The default value for this is nil.

.,ali. vaI2..vain are the pssible values the hypothesis can take. The Iet'auft raliie
for this is '(true false).

3

0,?

prior-probability is a list of the prior probabilities of the values of the hypothesis.
This is only needed for the top nodes.

joint-conditional-probability-tensor is the tensor quantifying the relationship between
the manifestation (child) node and all of its causal (parent) nodes. This is only
needed for network nodes which have parents, and it is represented as a list of lists
of the form

((P[X,1 I U,, I ... &j P[xK I U1, U ... U,] ... P[A, I U,, ... U,)
(P[x, I ul u ,j P[xK I U11 1, ... ukj ... pl.y,, I ., ... I, U)

(P[x, I U:, ,U ... b' P(., I U-1, U2, ... U j,... P ,, I u, u,7 ... U.))

where X is a node and U, U, ..., U, are all of its parents,

P[A. I uj. , .U .. . ,,] is the probability of X = A given that U, U U =U

.... U,,= U,,,

, ... , , are the possible values of K.

.Ut,U U,,. are the possible values of U1,

U!1,,_ U, are the possible values ofr.

and ,, q, U,., are the possible values of U.

pnamelI pname2..pnamen are the ordered node names of the parents of this node.
The joiat conditional prohaoility teisor entries are based on this order in that the
node name of parent U, is pnamel. etc. Note that the slot parents-ord is ncr
needed if there is only one parent.

Similarly make-link Is used to create a link:

(make-link 'link-name
:tnode 'top-node-name
:bnode 'bottom- node- name)

where

link-name is the name of the link from the top node A to the bottom node B
represented by A -> B.

top-node-name is the top node or the causal node of the link: node A.

bottom-node-name is the bottom node or the manifestation node of the link: nodie B.

I

An example which shows how to create a network data tile is provided at the end ot'
Section 3.

4

Ip

- -q

3.2. Running the Program

A graphic interface has been developed for Symbolies and Suns. (In order to run
the program without the graphic interface, the reader should see Appendix B.) To run
BaRT, the user should load the system and then choose the appropriate commands. This
is explained in detail below.

3.2.1. Loading the System Definitions and the System onto PCL

Symbolic.s: Get into a Common LISP environment which has PCL. From the LISP
listener, load the system definitions by loading the file bart-de/sys.lisp which is in the src
subdirectory of the bart directory. Then load the system with the command {bart-
util:.load-bart). Now, invoke the program by first pressing the Select key and then press-
ing the Symbol, Shift and B keys simultaneously.

=! Sun Invoke suntools, and go to the src subdirectory of the bart directory. Then type
run-bart from the shell; this loads the system definitions and the system. Change to
packagcb art-frame with the command (in-package 'bart-frame). Now. invoke the pro-
gram with the command (bart-command-loop). Note that there is no return prompt
from this command.

3.2.2. Using the Command Menus

There are several command levels within BaRT. Selecting the commands from the
.ommand menu or choosing the nodes and links is performed similarly at all levels.

Choosing Nodes and Links

In order to select a node or a link for certain commands, the user must mouse-click
on the node/link. To select a node, the user must click left on a node. To select a
link on the Svmbolics, the user must click left on a link. To select a link on the Sun.
the user must click middle on each node which is connected to the link.

Selecting Commands

The available commands are activated by mouse-clicking left on them. (On the
Symbolics. the user can also activate a command whose first letter is in brackets by tV-

S-" ing the first letter of that command.) In addition, brief documentation for each command

is provided on Lhe Sun by mouse-clicking right on it.

-.,

," - -"'. -"I .°." ' " . "N '.'". ." ". ' °." .": "." - ." •".' " "" : """" -2 ""°"" . .2.2"" , , ,-4g , . '-

3.2.3. Top-Level BaRT Windows and Commands

BaRT Windows

After loading the DaRT system, the whole screen consists of six windows: the title pane.
the belief network display pane. the global system parameters pane, the command menu
pane, the node/link information display pane, and the LISP interaction window. Figure
1 provides a sample screen display.

The title window lies across the top of the screen and consists of the heading Bayesian
Reasoning Tool (BaRT) in boldface.

The belief network display pane is on the left hand side of the screen occupying a large
portion of the screen. This pane is used to display the network which consists of nodes
and their links. Some of the nodes in the network may be grayed (depending on whether
the option to compute benefit factors is selected); the intensity of the grayness measures
the entropy (uncertainty) in the belief values of each node in the network.

The global system parameters pane is on the top right hand side of the screen and con-
.* sists of two lines. The slot on the first line contains the data file name (this will be

empty before loading the data file). If the selected data file name is in boldface, then the
. - network is in equilibrium: otherwise the network is not in equilibrium. This distinction

is useful when propagating the effect of new evidence in the network in step mode. i.e..
updating one node at a time. The second line consists of two flags: step and debug.
These are boolean flags. If the string is in bold letters, then it indicates that the flag is
set on: otherwise it is off. Step mode allows the user to see the network update one node
at a time. Debug mode is riot yet implemented.

The command menu pane is right below the global system parameters pane and consists
of the commands in the top-level command loop. These are mouse sensitive and can be
'-:,.'zkc, by -ce-ck, lcft on them. All mouse-sensitive objects are highlighted when
the mouse arrow is on the object's region.

* The node/link information display pane is below the command menu pane and is used to
present information about nodes/links in the network.

In the bottom right hand corner of the screen is the interaction window for ncimai
interaction. This window is used for displaying messages or prompting tor information.

• and the user can enter information here. LISP expressions can also be evaluated in this
pane by first clicking on eval in the command menu pane and then typing the expression
to th e interaction window.

. "

.... W. -e

iS

"-'-

I I

__ ___L__ __ I I

., II "0.Z -- b

I 9
_ _ -! _ : .

4, T =

o* ,

r*, * -

0%L'

4 I.
3!

*.% 0 L.-s=

i ,; , , I .

-. .- . . 4 -

-' 4 0 4%

0

Top.Level BaRT Commands

The pcsible choices are:

add :
Adds new external evidence to a node. This is done by clicking on add first and

-. then clicking on the node to which the user wants to add external evidence. Now. a
menu appears which has the heading New External Evidence followed by the node's
name. (A sample screen menu for input of external evidence is shown in Figure 2.
0"2-" All of the values of the hypothesis are listed on the left hand side of this menu. A
scale is presented across the top with gradations of evidential support ranging from
"Rule out" to "Affirms." The area under the scale heading has a triangular marker
for each value which is initially placed under the position indicating indifference
(i.e. no evidential impact one way or the other). The user can indicate the level of
support (from the new external evidence) for each vilue by placing the cursor in the
appropriate position and then mouse-clicking left, causing the marker to be placed
there. The user has the option of choosing several modes for entering the evidence.
The default scale has Discrete intervals, and the marker will be placed under the

* closest interval gradation to where the user clicks. The user can choose to make
the scale discrete or continuous by clicking right on Discrete/Continuous Scale. A
menu appears with the options Continuous Scale and Discrete Scale. The user

shouid ,iick-right on one of these to change this option. The numbers listed on -op
of the scale can be shown or hidden by clicking right on Show/Hide Scale. A menu
appears with the options Show Scale and Hide Scale. The user shouid click-right on

--- one of these to select this option. The default is to show the scale. Finally. the
-ser ,an cnoose to enter the evidence in the form of a list of numbers bv clickinz
eft on .Numerzc e'ector and then typing in the list of numbers followed by a car-
inge return. This :ist should be of length eauai to the rank f that node ,,ere

J each number in the list gives the impact of the evidence on the belief .n tIe
corresponding value (in order) ,* the hypothesis. These numbers are to be inter-
preted as components of a likelihood vector having the standard semantics: aurne.s
greater than 1.0 indicate values supported by the evidence, numbers !ess than 1.0

, (but non-negative) indicace values argued against by the evidence. and 1.0 indicates
0. no evidential impact one way or the other. Note that the markers under the scale

move to the appropriate places after this list is entered. Now. mouse-click left on
either done to enter the new evidence into the system ,r abort to ignore the 'han ,e.
Once the new evidence is entered. the effect of that e ience can be propagateo n.
ciicking on propagate. After clicking on propagate or refresh. the node -o wrhch

0 external evidence has been added will be shown in reversed %ideo (white name on a
larsk background) in the Belief Network \Wndow.

0'

0%.- °

°o

;uleouC 01,count :.d~e~r

-, -4 -2 .3-.? - .7 "

:I , ia L , I

'QUE Ag

FALSE :_i_ _ _ _ __ .1995262
Oo.e Abort ShoueHide Scale OiscreteeContinuous Scale Nuneric Vector

Figure 2 - External Evidence Menu

- 'C delete

Deletes external evidence from a node. The user must click on delete and then click
, ,on the appropriate node. If there is only one piece of evidence for this node. that

evidence will be deleted. If there are multiple pieces of evidence for this node. then
a menu will pop up which lists each evidence and also the string "all." The user :an
click on the appropriate individual evidence he would like to delete or al to
delete all evidence from this node. Note that a node which no longer has any evi

. dence will stay in reversed video until the user clicks on propagate or refresh.

-. eval:
Clicking on this makes the LISP reader (displayed in the interaction window) read
an expression and evaluate.

explain
Explains the reasoning. Not yet implemented.

21D. ' ka-mode:
Changes to the knowledge acquisition mode which allows the user to enter the :nfr-
mation for a new network or change the information in an existing network. This

will be described in full detail in the following section entitled Knowledqe Acqa.5 -
tion Mode.

load:
Prompts for a data file anu loads it. It perforns ail the riecrtarv internal ,aic!ila-
tions, brings the network into equilibrium. and displays the network.

network
A.lows the user to change the cirrent network to any previously loaded network.
After clicking on networ, a menu appears with a list A* dl pr,'.1'islv ,al, -
works. The uiser should then ,!ick-left on the desired %etwork.

9

% %
-. . . .- . - --.

'C % ~ % 4%*,*%
,.,,-.. ' .,." .," ,,.-'-.'.'_'.." ._..." ." " . " . % .d': . _. .A J&% .. ' P& F& Be-. a.'.'. .k%_ . %r"- . .,.- - - - .

propagate:Updates the network and redisplays the information.

refresh :

Refreshes the display.

revert-net:
Resets the network back to the initial equilibrium state so the user can try a new
run with new observations without loading and reinitializing.

select&display:
kfter choosing this, clicking on any node or link in the network displays the infbr-

mation about that object in the node/link display pane. Depending on which user
modes have been selected. a histogram of the belief distribution for the values of a
selected node may be displayed in addition to the actual belief and belief* vectors.
the external evidence for the node, and a brief description of the node. The infor-
mation displayed about links includes the X, X*, 7r, and e vectors.

snapshot:
Saves the present environment in a file. Not yet implemented.

targetnode:
Indicates the influence of the other nodes in the network on this selected node. Not
implemented in this version of the system.

use r-modes
Allows the user to set available options. After clicking on this. a temnorary menu
entitled Select User Modes of all the user setabie options appears ISee Figure 2).
The user can change any of these values by clicking left on them. Presently nine

global options appear with their present values in boldface. This command can be
terminated by clicking either on done to process the request or abort to ignore the
request. Step mode shows the propagation in steps, i.e.. the system propagates one
node at a time. This is useful if the user wants to see the results after each update

i of a node. Nte that the user can tell whether the system has reached equilibrium:

if the data file name in the global system parameters pane is in boldface. then the
network is in equilibrium. Debug mode is not implemented at present. Gear
node/link unndow each time determines whether the bws-tem will clear the node'link

display pane before presenting new information or append the new information.
The default is to clear the window each time. On the Sun, if the option is set to

append and the buffer becomes full, then this system will automatically clear the
old information and present the new information on a fresh window. Update beliefs

determines whether the belief of the values of each hypothesis is updated when the
system propagates the effect of new evidence. Update belief* determines whether

1

,- 10

I.

%

the belief* vector of each hypothesis is updated when the system propagates the
effect of new evidence. Compute standard detliation determines whether the stan-
dard deviation (of each value in the belief vector) of the hypotheses is updated when

the system propagates the effect of new evidence. This supplies information con-
cerning how much the belief in a particular value of the hypothesis might still vary.
This computation is not correct for entire BaRT networks yet. It should only be
used for the testing of a unit during knowledge acquisition. Compute benefit factors
determines whether the measure of the entropy (uncertainty) in the belief values of
each node in the network is updated when the system propagates the effect of new
evidence. This influence is shown by the intensity of grayness in the Belief Network
Wi']ndow. Display belief histogram determines whether the belief histogram for a
node is displayed in the node/link displav window when a node is selected. Max-
imum number of values to be displayed allows the user to see the top n sorted values
(based on belief) in the node/link display pane. To change this number, the user
must click left on the current number. Then he must type in the new number and
press Return (on the Svmbolics it is preferable to press End rather than Return.
The user can choose to display all of the belief values by tvping a 0 as the number.
The default is to display all of the belief values.

Select User Modes

C2e au9 oe"' -00 nt': e'11c ce =tes s No
['-s- soeate : 1'e

SCo ,ute ere ' c Ye s c• "-" Comoue ::ere:, -t r ¢s yeMs "0o

3rso j v e'e
9

5lstcgr, Yes "a

~x~nuer~ s~e ~ ~ ~ A l 3

- -- ""...r,

Figure 3 - User Modes Menu

V, exit- bart

E:its from the program.
N.

zoom:
. Allows the nodes in the network to be increased or decreased in size. A menu pops

up. and the user must click-left on the numeric fieid next to the label zoom 'actor.
The user should type a positive number to increase the size. a negative number c
decrease the size. or 0 to return to the original size. After typing rhe number. the
user must press return. Then the uiser must click-left on done ro process the rey;ue t
or on abort to ignore the request.

.. '..

.

3.2.4. Knowledge Acquisition Mode

,q" This version of BaRT provides a preliminary graphics interface for entering infor-
mation about a network. The user must enter the nodes as a unit. where each unit con-
tains a manifestation (child) node and all of its causes (parents) and the joint conditional
probability tensor representing the relationship between the node and its parents. Note
that the user does not need to specify links here. This definition of a unit was chosen
because it allows one to focus on a local contained relationship; a node and all of its
parents can be quantified locally by the joint conditional probability tensor in the BaRT

- model. The complete network will then be a full distribution composed of these local
unit relationships.

Knowledge Acquisition Windows

After clicking on ka-mode in the top-level command menu. new windows will
appear on the screen. At this state, the whole screen consists of six windows: the title
pane. the cluster window, the belief network display, the knowledge acquisition command

S.,' menu pane. the node/link information display pane, and the interaction window. Figure
* 4 provides a sample screen display.

The tide window and the interaction window are the same as they were in the top level.

The cluster window does not display any information in the current implementation.

The belief network display is on the bottom left hand side of the screen occupying a
"arge portion of the screen. This pane is iised to display the current piec s of the net-
work (subnetworks) which consist of nodes and their links.

/ The knowledge acquisition command menu pane is on the top right hand side and con-
sists of the commands for knowledge acquisition. These are mouse sensitive and can be
invoked by mouse-clicking left on them.

The node/link information display pane is below the command menu pane and is utsed to
present information about nodes in the network.

Menu Cornands for Knowledge Acquisition

The posible choices are:

add-evidence:
Adds external eidence to a node. The user must click on the node to which he
wishes to add evidence. Then he must enter the evidence as a list of numbers of

12

0N

C.. i-U.

-77 -77-

-rm

7J tl> U14

1013

-' -

length equal to the number of values of the hypothesis (where each entry
corresponds to each value of the hypothesis in order) in the interaction window.
These numbers are to be interpreted as components of a likelihood vector having
the standard semantics: numbers greater than 1.0 indicate values supported by the
evidence, numbers less than 1.0 (but non-negative) indicate values argued against by
the evidence, and 1.0 indicates no evidential impact one way or the other. The user
should then click on propagate-unit to see the effect of this evidence in the unit.

create-unit
Creates a unit (a node and all of its parents, and the joint conditional probability
tensor representing the relationship between the node and its parents). After click-
ing on create-unit, a menu pops up entitled New K-A Unit with one line for the
manifestation (child) node and one line for the first cause (parent) node. (See Fig-
ure 5.) The user must enter the information about the manifestation by clicking left
on the field to the right of the words 'Manifestation, list of values, its role." The
user should enter a name for the node followed by a list of values and a documenta-
tion string in quotes. These three fields should be separated by commas. Then he

-. should press Return and enter the causes similarly. The user can get this menu to
scroll upward (using the scroll bar) to make room for additional causes to be
entered. After all of the nodes for the unit are entered, the user should click on
done to enter the urit or abort to ignore the request. After the user clicks on done.
he will be put into the Joint Conditional Probability (JCP) mode. See the section
entitled Joint Conditional Probability Mode.

SNew AA Unit

5,faus. -o se 0- -. 'rsn; ~ n~vCQs;e: o oI-

Figure 5 - Menu for Creating New Units

delete-unit
Deletes a unit. This command deletes each node in the unit (a child node and all of
its parent nodes) unless the node also belongs to another unit. The user must click
on delete-unit and then click on the appropriate child node.

eval

-Cicking on this makes the LISP reader (displayed in the interaction window) read
an expresion and evaluate.

load-descriptions:
Prompts for a data file which was previously saved in knowledge acquisition tormat.
loads it. and isplays the network.

14

,,

modify-unit:
Modifies a unit. After choosing this, the user must then click on a node of a unit.
If a child node of a unit is selected, then a menu pops up with the choices .Idd-a-
parent, Delete-a-parent. Change-node-values, or Modify-JCP, and the user must
click on one of these. Add-a-parent will allow the user to add a parent node to this
unit. A menu pops up for the addition of the one parent node. The user should
enter the information as he would for create-unit. Delete-a-parent allows the user
to delete a parent from this unit. The user must click on the specific parent he
wants to delete. Change-node-values allows the user to change the values in the
child (manifestation) node. A menu pops up which asks for the new list of values
for this node. The user must click on the field labeled a list and then type in the
new list of values. Modify-JCP allows the user to modify the joint conditional pro-

bability tensor for this unit. After any of the above choices. the user is placed in
the JCP mode so the joint conditional probability tensor of this unit can be
changed to reflect and remain consistent with the modification. If the user instead
clicks on a top node of a subnetwork (one of the current pieces of the network)

after clicking on modify-unit, then a menu pops up with the choices Change-:\des-
Values or Change-:\des-Prior. For either choice, a menu pops up: the user must

click on a list and type in the new list.

propagate-unit:
Brings the unit into equilibrium. If there is only one unit. then it will bring the

* unit into equilibrium. If there is more than one unit. then the system will ask
which unit the user wants to propagate: the user must click on .he child node of the
unit he wants propagated. Note that the system will warn the user (in the interac-
tion window) if he has not entered information in the joint conditional probability
tensors or aas not ,iicked on done in bhe JCP mode to enter the information. "e

" unit will not propagate in this case.

reset-ka:
Clears everything away so the user can enter a new network.

save-descriptions
0 Saves the current state of the network (or subnets) for use in BaRT or for kater

editing. If the current state is not acceptable for loading into the top level C BaRT
(i.e.. if there are several subnetworks rather than one combined network, or if' -ome
of the joint conditional probability tensors have not been entered). then the ,user
will be prompted for a file name so the current state can be saved for future ,t-
ing. Otherwise, a menu appears which asks the user whether he wants to save this
in the current format for future editing or if he wants to save this for loadin" into
the top level of BaRT. The user should click-left on the appropriate choice. In
either case. the user is prompted for a file name. In the latter case. the user is also
prompted for a network name.

n- .

0

select&display-ka:
After choosing this, clicking on any node in the network displays the information
about tLat node in the node/link display pane. Depending on which user modes
have been selected, a histogram of the belief distribution for the values of a selected
node may be displayed in addition to the actual belief vectors, the external evidence
for the node, and a brief description of the node.

i.... '4'exit-ka:

Exits from the knowledge acquisition phase and returns to the top-level conmand
loop.

'4 3.2.5. Joint Conditional Probability Mode

-.. The user will enter this mode if he was creating or modifying a unit in knowledge
* -.x-" acquisition mode. When the user is placed in this mode, he can modify the joint condi-

tional probability tensor. The tensor is represented as a matrix in which the values of
the child node are on the left and the combinations of the values of the parent nodes are

* listed across the top. Each entry represents the degree of belief that the child node
would be equal to the value in that row given the combination of parent node values

"4, indicated at the top of that column. Note again that the numbers used to quantify the
.4. relationship do not have to be probabilities. -ll that *s required is that the tensor entries

are correct relative to each other. If the joint conditional probability matrix has just
been created. the entries have question marks in them. If the matrix is not new. then It

will contain numeric entries. These can be replaced with numbers as foilows: the user
must place the cursor over the entry he would like to change and then he must click-
right while holding down the Meta and Control keys on the Svmboiics. On the Sun. the
user should ciick-left on this field. Then the user can type in the numeric value and
press Return. The default for any entries not given by the user is "1.0." The user can

.4 now test the unit or return to the knowledge acquisition command level as described in
4 . the JCP Men, Commands section below.

* Joint Conditional Probability Windows

When the user is placed in this mode. a new set of windows appears on the screen.
At this state, the whole screen consists of six windows: the title pane. the joint condi-
tional probability window, the belief network window, the .JCP command menu pane.
the node/link information display pane. and the interaction window. Figure 6 provides a
sample screen display.

• %-

-. The title window, the belief network window, the node/link information display pane.
and the interaction window are basically the same as they were in the knowledge acquisi-
tion level.

S16

A..,%

I

- ma
0 ~ ~ AU x xx

i~4i)

U3

a1

The Joint Conditional Probability Window is used to display the current joint condi-
tional probability tensor. .Note that a unit was chosen or was being worked on in the
knowledge acquisition level before the user is p, ced in JCP mode, so the current joint
conditional probability tensor belongs to that particular unit. In order to modify
another existing joint conditional probability tensor, the user must exit from the JC?
mode and click on modify-unit in the Knowledge Acquisition menu.

The JCP command menu pane is on the top right hand side and consists of the com-
mands for entering and testing the joint conditional probability tensor. These are mouse
sensitive and can be invoked by mouse-clicking left on them.

JCP Menu Commands

abort :
Allows the user to exit from the JCP mode -" nd return to the knowledge acquisition
command level without entering any changes to the joint conditional probability
tensor into the system.

*,: done:

A llows the user to enter any changes to the joint conditional probability tensor into
the system and exit from the JCP mode, returning to the knowledge acquisition
command level. The user must click on this in order to propagate the unit later.

mode:
Allows the user to enter the joint conditional probability tensor using different
methods. Not vet implemented.

select&display-ka:
,- After choosing this. clicking on any node in the network displays the information

about that node in the node/link display pane. Depending on which user modes
have been selected. a histogram of the belief distribution for the values of a selected
node may be displayed in addition to the actual belief vectors, the external evidence
for the node, and a brief description of the node.

set-prior-prob:
Allows the user to set or change the prior probability of a top node of the current

Sunit selected. After selecting a parent node, a menu appears and the user must
click-left on the field labeled a list to enter the new list of prior probabilities. Note
that these values will stay as the list of prior probabilities for this node even after
exiting the JCP mode. However. they will not be used in the propagation of a init
in the knowledge acquisition command level unless they are the prior probabilities

* for a top node of a subnetwork.,:

18

0J

try-evid:
Allows the user to add temporary evidence to the child node of the unit being
worked on. A prompt is given in the Interaction Window to enter the list of e~i-
dence. This evidence is propagated through the unit and the new belief of the child
node is displayed. Note that this evidence will not stay with the node once the ,ser
exits the JCP mode.

3.2.6. Avoiding Potential Problems While Running BaRT

On the Symbolics, it is preferable for the user to press the End key rather than the
Return key to enter information in BaRT windows/menus. This will help to avoid
display problems.

If there is a problem or error in LISP while on the Sun. the user should not type a
to abort to the LISP top level because this will bring the user out of the BaRT LISP top

level and into Sun's Lucid LISP top level. The user should instead type the command
(back) to get back to the top level within BaRT.

3.3. Example

This example was presented in 1Gm[4. Say an alarm in a house rings when there is
an intrusion or when there is an earthquake. Also. earthquakes are reported on 'he

/radio. The nodes and links and their prior probabilities and conditional probabilities tor
this problem are given below as they would be written in a data file. The netwcrk is
shown pictorially in Figure 7. (The information for this network is in the data 'ie 'ailed
alarm.1isp.)

,.. Figure ,-Alarm .Network

W.:.;:,=--. Beginning of data file

.. :: network infobrmation
i~i: (mak-net 'lr-network)

(mk alarm ~ ~ g

.4-.19

;;;-.~--=--=node information

(make-node

:role "Probability of ALARM'v ringing"
:condprol '((0.76 0.24) (0.73 0.27) (0.28 0.72) (0.19 0.81))
:parents-ord '(BURZGLARY EARTHQUAKE))
;where
:Probability [ALARMvt-=rue I BURGLARY~true and EARTHQUAKE~truel 0.76
;Probability [ALARIM1=alse I BURGLARY~true and EARTHQUAKE~rue -0.24
:Probability [ALARLM~rue I BURGLARY=4rue and EARTHQUAKE~falsei 0.73
;Probability [ALARM'f~alse I BTURGLARY~true and EARTHQUAKE~'alse] 0.27

;Probability fLALk&RMrue I BULRGLARY=%alse and E.ARTHQUAK<E=ruej 0.2S
:Probability (ALAR.M=false I BURGIARY~false and EARTHQUAEruej =0.72

;Probability (ALAR.Nf~rue I BURGLARY=4'alse and EARTHQUAKE~asej 0.19
;Probability [ALARM/I'alse I BUR.GLARY~faise and F.ARTHQUAE=aseI 0.81

(make-node
* 'BURGLARY

:role "Probability of BURGLARY"
:prior (010.9))

(make-node
-~. .~ EARTHQUAKE

:role "Probability of EA\RTHQL'\-
:prior '(0.2 0.8))

(make-node
'RADIO-BROADCAST
:role "Probability of ELARTHQUAIU E

indicated by RADIO-BROADCAST"
* :condprol '(0.8 0.2) (0.001 0.999)))

.,where

:Probability (RADIO-BROADCAST~r rie IEARTHQL-V\==re: 0.8
Probability- RhADIO- BROADCAST -false I EIARTH-QUAi, = rue i = 0.2
Probability iRADIO-BROADC-ST==riie IEARTHQUAKE~'alse(= 0.001

*;;Probability[RADIO- BROADCA-ST==aise I E-ARTHQLAK VE==asej = o.999

0

V 20

0

"'" - - -=,-link information - --

(make-link
'1k-BUIRGLARY- > .ARLAFM
:tnode 'BURGLARY
:bnode 'ALARM)

(make-link
'Ik-EARTHQUAKE- >AIARM
:tnode 'EARTHQUAKE
:bnode 'ALAR VI)

(make-link
'Ik-EARTHQUAKE- >R.ADIO-BROADCAST
:tnode 'EARTHQUAKE
:bnode 'RADIO-BROADCAST)

,,-- - - - - - End of file . . .

- To run BaRT with this data file. do the following:

Invoke BaRT as described in Section 3.1. Click on load. This prompts for the data
file name. Type the data file name. The program brings the network into equili-
brium. At this stage we do not have any external evidence, so information on any

- node displays nil in the external evidence field. Now click on add and then click on
-the node alarm. Change the external evidence of that node by clicking under

.4fflrms in the row labeled True (to show that it is true that the alarm is ringing).
Note that the marker in the row labeled False automatically moves to the position
Ruleout (to show that it is therefore false that the alarm is not ringing). (See Fig-
ure 8.) Once the evidence is given, click on propagate. This propagates the new evi-
dence in the network, changing the beliefs of the nodes, and brings the network into
equilibrium. Click on select&display and then click on a node or a link to see infor-
mation about that node or link in the node/link display window. The evidence that
the alarm is ringing would actually increase the belief of both burglary and earth-
quake. Now change the external evidence fields of radio broadcast to .4ffirms in the
row labeled True. Again, this automatically moves the marker to Ruleout in the

* row labeled False. This change would result in a further increase in the belief of
-art hquake and reduces the belief of burglary.

To rim the program again with the initial settings. click on rei'ert-net and proceed.

21

d . * d .. 2 -

:qu eOut , oscoun n'ttffertnt 3.. u9 z3 OFF,

-3 -4 -2 -1 -.7 -.3 0 .3 .7 1 2 4

PALSE

Done Abort Sho.. Nde Scale 0screteecontlnuous Scole umertic Vector

Figure 8 - Entering Evidence for Alarm Network

.,,:

4. Irnplernentation

BaRT is implemented in PCL on top of Common LISP. A graphic interface is pro-
.5 vided on Symbolics and Suns showing the network (the nodes and their relations), the

belief vectors, the belief* vectors, the coefficients, and the dynamic propagation of beiiefs
(or belief*) as new evidence is obtained.

Several generic classes of objects are defined for BaRT. Instances of networks are
the individual networks which can be loaded. Instances of network nodes represent
hypotheses of the domain and instances of network links represent the relationship
between hypotheses.

Each network node carries the following information: a vector containing the posi-

ble values which the hypothesis can hold. a vector which sto: s the belief distribution ctf
that node, and a vector which stores the belief* distribution used for the categorical
assertion of that node. A topmost node (one which has no parents' also has a vector
containing the prior probabilities of the values of the hypothesis. The number of ele-
mens in the belief. belief*, and prior probability vectors is equal to the number of values
that the hypothesis can take (the rank), and each element represents the
belief/belief*/prior probability of the corresponding element in the values vector. All
network nodes except topmost nodes also carry a tensor containing the joint conditional
probabilities which represent the relationship between the node (manifestation) and all 4t
its parents (causes). (See Appendix A for a definition of tensor.) The joint conditional
probability tensor is provided by the user as described in the sections on Data Files and

0 Knowledge Acquisition. This tenrsor is of order (n + 1) with indices ijk..l where i i5 ,he
rank of the node. j,k...l are the ranks of its parent and n is the total number of parents.
This is represented as a list of lists (a matrix) of the form

22

'%*. -

((P[x, I U1 , ... u.J P[X I U1 , ... U, 11 ... P[x_, I U" u . L.,
(P[x, I U ,. U,, P[XI U , .. ,',, V r,, r

1 , 17- ... I I 2 . L L ft]))

(Pix, I U,, U21 ... U1,J P[X I UP ... v ,] P[.x, I , U]

where X is a node and U,, 0. U,, are all of its parents.

P[. I U U2 , UJ is the probability of X = . given that U, U,, = .,

X1 X , ..., X, are the pcssible values of X.

U, , U, , Ul,, are the possible values of U,.

U,, U2, ..., U2. are the possible values of U.,

and U, U. ..., Ur, are the possible values of U.,

Each network link connects two nodes (a causal or top node of the link and a man-
ifestation or bottom node of the link) and carries the following information: a vector X
which indicates the diagnctic support from the bottom node, a vector 7r which indicates
t the causal support from the top node, a vector X* which represents the diagnostic sup-

V port for the belief* distribution, and a vector ,* which represents the causal support for
the belief* distribution. ,\. X. ,r and '1 are all of degree n where n is the rank of the
causal node.

Each node has procedures attached to it. Update is one such procedure that (,an
,ipdate the belief and/or beiief* of a node. \When new evidence is obtained for a network
node. it can be propagated in the network by ,changing the incoming X ior V)(or 7r or

'r') at the node AX [or XV) in the case of a manifestation. -r ior ,,l in the case of a <ause:.
The sstem immediately detects the intrcduced inconsistency (i.e., the jifference between
the old coefficients and the current ones) and updates the node by calculating the new
belief (or beliefr) vector using all the incoming Xs (or X*s), -,M (or -rs' and the joint con-
d litional probability tensor. The new coefficients which will be sent to neighboring node
are also calculated. Now, if the new coefficients sent to neighboring nodes are different

, from the old coefficients, then these nodes are updated also. This propagation continues
* ,ntil there is no further change in the coefficients, and the network reaches equilibrium.

This procedure is described in more detail in the following paragraphs.

In each update of the belief of a node. two variables., effective \ and tfectiwP -f

-.he node. are calculated using ail incoming ,oefficients (the Xs and - ,7f iil !he lirk :n-
nected to the node). Effective X is the term product of all the incoming \s. Effectivp Is

the tensor product of the combined conditional probability tensor and the outer proiucr
;f all incoming . Then the ratio of ',he belief !s calculated -s the term Dr-dict -f

.fective X and the effective 7. Absolute belief is obtained by normalizing this ratio wit

.respect to 1. After calculating the belief. ,pdating involves 'alulatini the f,,

03

coefficients (7s and Xs) for all the links of the node. The new coefficient of a link is the
belief of the node supported by all the incoming 7m and Ns except that particular X or 7

of the link for which the new coefficient is being calculated. New -,s of a link are calcu-
lated by taking the term quotient of the new belief of the node and the incoming X of
that link. The new X of a link is the matrix product of the term product of all \s and
the tensor product of the combined conditional probability tensor and the outer product
of all the m except that particular 7r that is associated with the link for which the new X
is being calculated. Once these new coefficients are calculated, the up,:ating procedure
involves comparing these new coefficients against the old ones and finding out which
link's coefficients are changed. If a change is detected, then the neighboring nodes at the
other end of these links must be updated. The new nodes are updated. and this propaga-
tion continues until there is no further change in the coefficients, and equilibrium is
reached. The equations for updating belief are shown in Appendix A.

Th- computation of belief* is slightly different from belief updating. In belief
updating, individual support from all of the node's neighbors is added whereas in belief*
updating, these individual supports -ire maximized. .-%s shown in the equations in Appen-
dix A. this can be achieved by replacing the first operator + used in the inner product by

• the operator max and replacing all -s with rs and Xs with XNs. A fuller discussion of
--. the belief and belief* updating equations used in BaRT is given in Booker [2!. For more

" etails refer to Pearl 3,5.6 '"

AlI the basic procedurbs that iave been introduced so far allow one to update the
network and bring it into eq'iilii;ritm. All of the core functions except the knowledge
acquisition functions are ,ierined in a package cailed bart which is in the ffle named bart.
This does not have my }nterfac- and -an be uised on any machine with Common L SP

*) .and PCL. The ,sejr can --all : me of the 'unctions in tiis file from another nrgriin:
these !'uncticns are iescribe i .\ppendix ('. The knowiege acquisition ore llincll, L
are ,Ieined in a package called art-ka which is in the tile named bart-ka. These shoi,i
be used with the graphic interface on the Symbolics and Suns. A non-graplic utser inter-
face 'is deveiopedi for uise on any machine with Commuon LlSP aind PQL 5ee Appendix B.
this code is in the tile bart-frame-tty. The graphic user ii ace (machine dtependenti is
developed for two machines: Syrnbolics and Suns. The interface code for the STnN i,.-
is in the file bart-frame-3600-ka and for the Sun it is in bart-frame-sun-ka. .Aything :a
particular prograinmer wants to add can be added here in bart-frame-<machne>. Thth

-"' name)f he package in he iLsr interface les is bart-frame. .l]1 the general utilities are
- in the package nrt-,tzi which resides in the file bart-Udd. Presently, 'our ample iata
- :is 'ire being I ued and t.hev .re in the firectorv called data in the h)ar ii re'torv.

24-' ..o- - * . - -. '

o .-

"., ,"....".. d" . -.. .'" .. ' ''". b '". , '. .","" "" ''- . ". , .- . . ".'.". .".'r.. "; . .-w"", %'m'".'- .- ." '

5. Selected Implementation Details

The following paragraphs discuss some of the implementation details wh-ich affect

the system's efficiency.

, The update procedure can be invoked recursively to update all of the nodes. However.

this is inefficient because of the large stack spaces that it would have to maintain.

.- Instead we use a global procedure which first updates a node and then places the nodes
that are returned on a list so it can later update these new nodes. This way the recur-
sive overhead is avoided. Choosing which node to update or, alternatively, where to
place the freshly returned to-be-updated nodes in the global list can also affect rhe
program's efficiency. When placing a node in the global list. it is moved to the end of

' .the list if it was already in there. Since the updating procedure takes one node at a time

from the beginning of this global list, the updating of an affected node is postponed as
long as possible, resulting in fewer updates to reach equilibrium when multiple evidence
is available at the same time.

" The coefficients X and r represent their support as a ratio. After finding the new

•S values of each coefficient during the updating of a node, these coefficients are normalized

before they are stored at the appropriate links. Since the old and new values of the
coefficients are compared to determine whether there has been a change. comparing the
normalized values allows the system to avoid duplicate updates. and the system :an
attain equilibrium more quickly.

0 The coefficients are real numbers and are represented as floating numbers. Ccmparing
these real numbers using the built-in "equal" function compares them to the last decimal
digit (16th). Instead. assuming a small error, and comparing the numbers to some :nth
(4,5....) digit reduces the computation greatly without any significant affect on the accu-
racy. The present implementation compares numbers up to the 4th digit. This ,ian be
changed by changing the value of the global variable precision to any desired accitracv.
The default value of this variable is .0001.

* • Calculating new 7s at a node involves two inner products. one outer product and one
term product for each 7r for each iteration. Inner products are costly. Instead the product

"P A I

where
.. is the term product

is the inner product
P is the joint conditional probability tensor

". A is the term product of incoming Xs
H is the outer product of incoming 7rs (these terms are described more fully ii

25

or. 4411M .

Appendix A)

is calculated for each iteration and then 7s are calculated by summing over different
indices of the above product. This saves a great deal of execution time by reducing mul-
tiplications and divisions to additions.

4..2

A

i. !.,

'-'-:2

N' "2

Appendix A

Tensor Product Computation

A tensor is a mathematical object that is a generalization of a vector to higher ord-
ers. The order of a tensor is the number of indices needed to specify an element. A vec-
tor is therefore a tensor of order one and a matrix is a tensor of order two. Three stan-
dard operations defined on tensors are relevant to this discussion:

Term Product The term product is defined between two tensors A and B hav-
ing the same indices. Each element in the resulting tensor C is simply the product
of the elements with the corresponding indices from A and B.

C=AEB where c..i- , =a X b...,

Outer Product The outer product of two tensors A and B having order m and
n respectively is a tensor C of order m+n. Each element of C is the product of the
elements of A and B whose aggregate indices correspond to its own indices.

C=AoB where c x. ... , a... . xb...

Inner Product The inner product of two tensors A and B is a tensor formed by
taking the outer product of A and B and then summing up over common indices
that appear both in A and B. If A is of order m. B is of order n and they have k

common indices then the inner product C is a tensor of order m-)in-k).

C=,A.B where c,, ,x1 !,)

Equations

Let x.. X,. r, and r', be vectors (or, equivalently. tensors of orier 1) whose ele-

ments are the messages a node X receives from its children and its parents respectively:

Xy = \y(X,) where r is the number of possible values for X

_.= Xz 1) X ,(where r is the number of possible values for V

0 ,r, (A u.,) Arxdi. where rti) is the number of possible values for l'

',= k,(u.) .-. . u.. , where H i) is the number of possible values for

The term product of all Xy. vectors is another vector It of length r given by

A = y Y Y'. (Z 1)hyW

The term product of all X.vetors is another vector .1' of lengt ivnb

A' X;,4 X= [J7\(IT

27

%p NN

r PI

"- Te r rdc falx.vcosi nte etrAo eghrgvnb

A =5 '-X . - y() 'r(.

5:- Tetr rdc falxvcosi nte otr."o egh gvn

The outer product of all ru, vectors is a tensor II of order n given by

"= u, o ... o , where ir,

t.-I
The outer product of all r , vectors is a tensor rli of order nt given by

11 ruo o w here rt, ... j],,~

We can consider the set of fixed probabilities P(z I ,",u,) as elements of a tensor P of
order n+1. Now if we compute the inner product of P with 11 we obtain a tensor of
order 1 (the indices for the U are common to both tensors):

P I0 n P(I I P(X, , • i.) lyix(ui)i
k-I .

If we make the summation operator explicit, we can rewrite the formula as
D4

'4]1 - ' , i =uit -. ,}
P 0' .iPZ i U,.)Ifrxo u') , £ (r i1 i)f, U'

We can now denote the formula for BEL as

BELo Ax(P .r.I)

If we compute the inner product of P with I' we obtain a tensor of order 1:

P ii = ' P(X, , •• r. , I Z P(z, U i.. {u,-

The BEL' computation requires us to maximize over all elements U, rather than taking a
sum. so we can redefine the inner product operator as a maximize operator, and we can
denote this new inner product with the symbol .u,.

P 07M m x = tLi,) m ,ax P(z u1', • . ,)21 ,. u t
*l , i"1"r \'u . 1) ,I' ma • (.r. u . 11.

Now the BEL*(z) computation can be written in tensor notation as

BEL' = a A')K (P -,,. II')

V Moreover, it is clear that we can use similar methods to compute the messages that node
. X will send to its neighbors. The vector ry. destined for child Y, can be computed by

term-by-term division of the elements of BEL by the elements of XY. and the vector r.
can be computed by term-by-term division of the elements of BEL' by rhe elements ot'
x ,. The vector Xy destined for parent Uj can be computed just like BEL except that we

* replace the vector ir, with a unit vector (1 , I) of equal length when computing the

" outer product I, and the vector X. can be computed just like BEL' except that we

replace the vector r. with a unit vector (1 i) of equal length when computing the

outer product In°.

28

0

M.*** - -**'***,*Y.~,*.-

The beliefs and belief commitments can be computed in one uniform scheme as
shown in Figure 9.

M,1 2 -AI &2'n.

11 Bel (lA
'X1...

"'+" Bel (A) "

! '

Figure C combined updating of belief and belief commitment (the operator * rep-

resents the standard or modified inner product depending on whether op is

I.', * or maxl. In behef commitment all the ,m, ks. and LBels should be changed

to "s. k-s, and Bel's.

0

"'-.., 29

0 %

Appendix B - Using the System without the Graphic Interface

BaRT can be run without the graphic interface. The user must get into a Common
LISP environment which supports PCL. Load the files bart-defsys. lisp, bart-util. bart,
and hart-frame-tty (in order) which are in the src subdirectory of the bart directory. If
the user is on a terminal other than a Symbolics or a Sun, then he can just type the
command (bart-utiL:load-bart) instead of explicitly loading the files named above. Now.
type the command (in-package 'bart-frame).

After loading a data file using gen-load, the following LISP functions can be
invoked:

gen-add:
Adds new external evidence to a node. The arguments for this function are a node
name, a list representing new evidence, and a network name. The node name is an
optional argument. If a node name is not specified. this function will prompt for
one. If an invalid node name is given, a list of the valid node names will appear,. and the function will again prompt for a node name. The function will then

prompt for a list of numbers (of length equal to the rank of that node) representing
the new evidence; each number in the list gives the impact of the evidence on the
belief in the corresponding value (in order) of the hypothesis. If new evidence for a
particular value is unknown, that can be given by including a "1.0" in the list
corresponding to that value. If a network name is not given in the list of parame-
ters, it always defaults to the current network. The effect of the new evidence can
be propagated by calling gen-propagate.

'-4 .'

gen-delete:
Deletes external evidence from a node. This function takes a node name and a net-
work name as optional arguments. If a node name is not specified. this function
will prompt for one. f an invalid node name is given, a list of the valid node
names will appear, and the function will again prompt for a node name. If a net-
work name is not given in the list of parameters. it always defaults to the current
network. If the specified node only has one piece of evidence, then this will be
deleted. If there are more than one, then a list of the evidences will be presented so
the user can choose which evidence he wants dcleted: the user will also be zivwp the
choice to delete all of the evidences. The effect of the removal of the evidence can

• be propagated by calling gen-propagate.

gen-display- nodes:
Displays information about the nodes. This function takes a node or a list of nodes

.4, and a network as optional arguments. f one node is given as the first argument.
0 this function displays only the information about that node. If a list of nodes is

.0-,...e
O

given as the first argument, this function displays the information about the nodes

in the list. If no argument is given, this function displays the information about all
of the nodes. If a network name is not given in the list of parameters, it always
defaults to the current network.

gen-display- links:
Displays information about the links. This function takes a link or a list of links
and a network name as optional arguments. If one link is given as the first argu-
ment, this function displays only the information about that link. If a list of links
Sis given as the first argument, this function displays the information about the links
in the list. If no argument is given, this function displays the information about all
of the links. If a network name is not given in the list of parameters, it always
defaults to the current network.

gen-load:
Loads a data file. This function takes a file name as an optional argument and
loads the file. If a file name is not specified. then this function will prompt for one.
It performs the necessary internal calculations and then brings the network into
equilibrium. An example of the gen-load command on the Symbolics might be
(gen-load 'ocal:>bart>data>ship.lisp") and an example of this command on the

Sun might be [gen-load "/usr/prj/bart/data/shzp.Lsp).

gen-network:

Allows the user to switch back and forth between networks which are already
loaded. This function takes a network name as an optional argument. If a network

name is not specified, this function will prompt for one.

gen-propagate :
Updates the network. This function takes a network name as an optional argu-
ment. If a network name is not given, it always defaults to the current network.

gen-revert-net:
Resets the network back to the initial equilibrium state so the user can try a new

run with new observations without loading and reinitializing. This function takes a

network name as an optional argument. If a network name is not given, it always

defaults to the current network.

gen-select&display :
% Displays the information about a node or a link. This function takes a node or a

link name and a network name as optional arguments. If a node or a link name is
,%. not specified. this function will prompt for one. If an invalid name is given. a list

of the valid node and link names will appear, and the function will again prompt
for a name. If a network name is not given in the list of parameters. it always

'I !3

defaults to the current network.

In addition to the above functions, the user has the ability to change the value of
bart:.*compute-bel*.-p* which determines whether or not the belief* values are updated
when the network is propagated. The user should type

(setf (bart:: *compute-bel*-p* bart::*sys-state*) t)

to update the belief* values and

(setf (bart::*compute-be*-p* bart::*sys-state*) nil)

to stop updating the belief* values. The default is not to update these values.

I33

4"

'V
0

)r

, S6

S I

0bd

;-33

0

0e

Appendix C - BaRT Functions Which Can be Called from Another Program

Certain BaRT functions can be called from other programs as long as the user is in
a Common LISP environment which supports PCL. These functions reside in the pack-
age bart which is in the file bart. The user must load the files bart-defsys.hsp. bart-itil
and bart (in order) which are in the src subdirectory of the bart directory.

All functions (except those pointed out below) return true unless the user calls a
BaRT function with an incorrect argument. In that case, a list of n elements containing
error information is returned. The user can process this list however is most convenient

, for him. The first element in the list is the atom &err&. The second element is an
which be decoded follows:

1 - The given network <arg> is illegal
2 - New evidence given <arg> is not a list
3 - Al the elements in the given new evidence <arg> are not numbers
4 - Length of the new evidence supplied <argl> is not equal to the rank of the node
<arg2>

5 - New evidence is not supplied for the node <arg>
6 - fllegal node name <arg>

7 - File <arg> doesn't exist
8 - Initial equilibrium has Lot yet been reached for the net <ar2>

9 - Illegal list of node names <arg>
10 - Illegal list of link names <arg>
11 - Illegal link name <arg>
12 - Illegal list of object names <art>
13 - Illegal object name <arg>
14 - Illegal evidence node/link
1.5 - node <arg> has more than 1 evidence
16 - no evidence present for <arg> node

,.1.

The third through (n - I)th elements are objects related to the error message. Tie 'L-t

S" (nth) element is a string which states the error message.

The following BaRT functions can be called from other programs:

* int-gen-add:
Adds new external evidence to a node. The arguments for this function are a noie
name, a list representing new evidence (of length equal to the rank ot' that n oo.
and a network name. Each element in the evidence list gives dhe imp:ict :C l, vi-
dence on the belief in the corresponding value (in order) of the hypothesi. It n'w

evidence for a particular value is umknown. that can be given 1w irwiin "

35

0,:

in the list corresponding to that value. The network name is an optional argument.
and if it is not given in the list of parameters, it always defaults to the current net-
work. The effect of the aew evidence can be propagated by calling int-gen-
propagate.

int-gen-delete:
Deletes external evidence from a node. The arguments for this function are an
object name and a network name. The network name is an optional argument, and
if it is not given in the list of parameters, it always defaults to the current network.
The object argument can be the network node which the user wants to delete evi-
dence from. the lambda link which connects the evidence node to the network node.
or the evidence node the user wishes to delete. If the argument is a network node
and this network node has more than one evidence node, then an error mesage will
be returned. The effect of the removal of the evidence can be propagated by calling
znt-gen-propagate. Note that if the user wishes to see the list of evidence nodes. he
can retrieve them with the function int-gen-get-evnd-nodes.

int-gen-display- nodes:
Displays information about the nodes. This function takes a stream, a node or a
list of nodes, and a network name as arguments. The network name is an optional
argument. and if it is not given in the list of parameters. it always defaults to the
current network. If one node is given as the second argument, this function
displays only the information about that node. If a list of nodes is given as the
second argument. this function displays the information about the nodes in the list.
If the second argument is nil or if no second argument is given, this functon
displays the infbrmation about all of the nodes.

int-gen-display- links:

Displays information about the links. This function takes a stream, a link or a list
of links, and a network name as arguments. The network name is an oDtionai
argument. and if it is not given in the list of parameters, it always defaults to the
current network. If one link is given as the second argument. this function displays

*i only the information about that link. If a list of links is given as the second argu-
ment. this function displays the information about the links in the list. If the
second argument is nil or if no second argument is given, this L'unction dispiays the
information about all of the links.

*i int-gen-get-evid- nodes:
Returns -all of the evidence nodes for the given network node as long as the argu-
ments are correct or an error message if the arguments are incorrect. The aru-
ments for this function are a node name and a network name. The network name
is an optional argument. and if it is not given in the 1i*t , r pr'imeters. it. always

36

.A17

.

defaults to the current network. The evidence is returned as a list of sublists where
each sublist contains the evidence node name and a list of the evidence values for
that node. The information returned by this function is useful when the user wishes
to delete an evidence node.

int-gen-load:
Loads a data file. This function takes a file name as an argument and loads the file.
It performs the necessary internal calculations and then brings the network into
equilibrium.

int-gen-network:
Allows the user to switch back and forth between networks which are already
loaded. This function takes a network name as an argument.

int-gen-propagate:
Updates the network. This function takes a network name as an optional argu-
ment. If a network name is not given, it always defaults to the current network.

int-gen-revert-net:
Resets the network back to the initial equilibrium state so the user can try a new
run with new observations without loading and reinitializing. This function takes a
network name as an optional argument. If a network name is not given, it always
defaults to the current network.

int-gen-select&display:
Displays the information about a node or a link. This function takes a stream. a
node or a link name, and a network name as arguments. If a network name is not
given in the list of parameters, it always defaults to the current network.

get-ptr:
Returns the internal pointer to the node or the link. This function takes a node or
a link name and a network nqme Pz rommpnt.q. If a network name is not given in

0,: the list of parameters, it always defaults to the current network. Note that this
macro returns only the internal pointer or nil: it does not return an error mesage f

-: the arguments are incorrect.

0 get-ptr-i:

"j. Returns the internal pointer to the node or the link. This function takes a node or
. a link name and an internal pointer to a network as arguments. If the internal net-

work name is not given in the list of parameters. it alway- defaults to the ,rrt
network. Note that this macro returns only the internal pointer or niil: it ice-s not

" return an error mesage if the arguments are incorrect.

37

0eW

ba.:In addition to the above functions, the user has the ability to change the value of

art..*compute-be* p* which deterines whether or not the belief* values are updated
.5

"when the network is propagated. The should type

(setf (bart::*compute-bel*-p* bart::*sys-state*) t)

to update the belief* values and

(setf (bart::*compute-bel*-p* bart::*sys-state*) nil)

to stop updating the belief* values. The default is not to update these values.

V

-p

,.38

.el

-5-"..," ," .. '" % . . " .. ,,. - .- _ % •, -',."L.' .. ,',.*,. .. . ".,, . ' . .. ,: " ¢ ,,. _ " .,. - ,. . - . .".4 : , ,,5. - .. " , .% .

References

1. Booker, L. B. and Hota, N., Probabilistic Reasoning About Ship Images. Proceed-
ings of the 2nd AAAI Workshop on Uncertainty in Artificial Intelligence. Philadel-
phia. PA. August 8-10. 1986, p.29-36; also to appear in Uncertainty in .Artzficzal

2. Intelligence, Lemmer and Kanal (Eds.), North Holland, 1987.
2. Booker. L. B.. Hota, N. and Hemphill, G., Implementing a Bayesian Scheme for

Revising Belief Commitments. Proceedings of the 3rd AAAI Workshop on Uncer-
tainty in Artificial Intelligence, Seattle, WA, July 10-12, 1987. p.348-354.

3. Geffner, H. and Pearl, J., Distributed Diagnosis of Systems with Multipie Faults.
Technical Report CSD-860023, Computer Science Department. University of Cali-

. fornia, Los Akngeies. CA. December 1986.

4. Kim. J.. CONVINCE: A CONVersational INference Consolidation Engine. Ph.D.
Dissertation. University of California. Los Angeles. 1983.

5. im, J. and Pearl, J.. A Computation Model for Combined Causal and Diagnostic
Reasoning in inference Systems. Proceedings of IJCAU-83. Los Angeles. C.-L kugust
1983. p.190-193.

6. Pearl. J., Fusion. Propagation. and Structuring in Belief Networks. Irtzficial [ntelli-4gence. Vol 9. p.241-2S8. 1986.
7. Pearl. J.. Distributed Revision of Belief Commitment in Muti-I-I\potheses Interore-

tation. Proceedings of the 2nd .-LAAI Workshop on Uncertainty in ArtificiT lnreii-
gence. Philadelphia. PA.- kugust S-10. 1986. p-201-209.

S. Shafer. G.. TverskA..-. Languages and Designs for Probability Judgement. (,c<ni-
, dtie Science. Vol 9. p.-309-:339. 1985.

%39

4

* .t. ~ *

~p.

V

0 - -

h

0

0 1'

A'

* 3 3 3 3 3 3 3
* - .. A - c-w---r--r-r-.

- ~. A

*''~"~' 4.AAA***~AA *~ ~ A'~ J% *~**A - ~ ,~A ~ *-.

